Note

HEAT OF DILUTION OF AQUEOUS MIXTURES OF *N*-ALKYLATED AMIDES AT 313.15 K

A. ZIELENKIEWICZ

Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

(Received 26 March 1984)

Experimental values of heats of dilution in a series of aqueous solutions of *N*-alkylated amides at 313.15 K for methylacetamide (1), ethylacetamide (2), methylpropionamide (3), propylacetamide (4), *i*-propylacetamide (5), *t*butylacetamide (6), methylisobutyramide (7) and butylacetamide (8), and a 298.15 K for methylacetamide (9) and butylacetamide (10), are given. The range of concentration used was: m = 2.582-0.028 mol kg⁻¹. The experimental values were correlated using the simple additivity principle of Savage and Wood.

INTRODUCTION

In a previous paper [1] the results of a calculation of thermodynamic excess functions H^{E} , G^{E} , S^{E} on the basis of experimental values of heats of dilution of diluted aqueous solutions of alkylated pyrimidines, aminopurines and caffeine, were presented. The main interest is a search for the dependences describing the solute-solvent interactions of diluted aqueous solutions, to describe the thermodynamic properties of groups of compounds which differ by alkyl-chain length and their position in the molecule [2-5]. This also requires the determination of heats of dilution for chosen N-alkylated amides. The values of heats of dilution were used for calculations of the pairwise enthalpy of interaction. A simple additivity principle is used to correlate the experimental data. Beside this group of compounds, investigations of vapor-liquid equilibria and calculations of excess thermodynamic functions at 313.15 K [6] were carried out in this laboratory. The results of heats of dilution are complementary to data for amides at 298.15 K given in the literature by Savage and Wood [7] (N-methylacetamide, N-methylpropionamide, N-butylacetamide, N-methylformamide); Wood and Hiltzik [8] (formamide, acetamide, propionamide, N, N-dimethylformamide); Kresheck [9] (acetamide, N, N-dimethylformamide).

Enthalpies of dilution

m	$-\Delta H/n_{A}$	Δa	m	$-\Delta H/n_A$	Δa
$(mol kg^{-1})$	$(J \text{ mol}^{-1})$	$(J \text{ mol}^{-1})$	$(mol kg^{-1})$	$(J \text{ mol}^{-1})$	$(J \text{ mol}^{-1})$
N-methylacet	amide (313.15 K	.)			
2.1716	208.6	0.0	0.5655	38.4	-0.2
1.5163	132.1	-0.3	0.4091	24.6	- 1.7
1.0771	82.7	0.0	0.2969	17.8	0.2
0.7826	58.1	1.1	0.2187	14.1	0.9
			0.1584		
N-ethylacetar	nide (313.15 K)				
2.1170	432.1	0.0	0.3738	48.6	-1.0
1.4657	272.5	0.0	0.2697	32.5	0.2
1.0346	174.8	0.0	0.1943	21.0	1.1
0.7340	112.0	-0.2	0.1408	16.9	-1.1
0.5240	72.9	0.8	0.1015		
N-methylprop	oionamide (313.1	5 K)			
1.8685	399.4	-0.5	0.2532	39.2	-2.3
1.3132	267.9	2.0	0.1847	32.8	2.8
0.9334	178.7	-1.4	0.1346	24.9	4.1
0.6664	117.9	0.3	0.0993	23.6	8.0
0.4859	84.2	-2.6	0.0726	2010	0.0
0.3486	57.0	-1.8	0.0720		
N-propylaceta	umide (313.15 K))			
1.1450	387.2	-0.9	0.2176	46.3	-16
0.8146	247.2	1.1	0.1594	34.6	-0.1
0.5801	159.1	3.1	0.1160	26.1	0.9
0.4179	103.2	-13	0.0840	20.1	0.7
0.3018	69.2	- 2.8	0.000.00		
N-i-propylace	tamide (313.15 k	() ()			
1.8348	636.9	- 00	0 3386	81.5	-20
1.2844	434.5	-0.2	0.2457	55.3	-33
0.9020	266.6	0.6	0.1776	41.2	0.7
0.6544	182.3	0.3	0.1289	357	6.6
0.4739	102.0	0.5	0.0931	55.7	0.0
N-t-butvlacet	amide (313.15 K)	0.0751		
0.5270	219.3	0.0	0.1483	46.7	1.2
0.3869	145.8	0.1	0.1075	30.4	-1.3
0.2811	97.9	-0.5	0.0781	23.0	0.0
0.2025	63.6	0.3	0.0562		
N-methylisobi	utyramide (313.1	5 K)			
1.6298	586.8	-0.3	0.3157	98.5	1.9
1.1590	436.0	1.8	0.2308	66.6	-0.8
0.8210	279.6	- 2.4	0.1699	50.7	0.6
0.5971	196.5	-0.7	0.1237		
0.4352	141.0	0.5			
N-butylacetan	nide (313.15 K)				
1.6170	1062.8	0.3	0.2107	90.1	-0.3
1.1120	750.1	1.3	0.1530	60.7	-0.8
0.7819	471.5	0.4	0.1114	43.9	1.5

$\frac{m}{(\text{mol kg}^{-1})}$	$\frac{-\Delta H/n_{\rm A}}{(\rm J\ mol^{-1})}$	Δ^{a} (J mol ⁻¹)	m (mol kg ⁻¹)	$\frac{-\Delta H/n_{\rm A}}{(\rm J\ mol^{-1})}$	$\frac{\Delta^{a}}{(J \text{ mol}^{-1})}$		
0.5644	315.1	- 4.2	0.0813	27.6	-0.3		
0.4046	206.1	1.1	0.0607	27.4	5.5		
0.2926	139.4	1.4	0.0440				
N-methylacetamide (298.15 K)							
2.5823	303.2	-0.2	0.4772	41.7	-0.5		
1.8207	206.8	0.8	0.3453	28.3	-1.0		
1.2834	133.4	-0.2	0.2511	22.8	1.8		
0.9161	87.2	-0.7	0.1824	18.4	3.5		
0.6623	60.6	-0.8	0.1328				
N-butylacetamide (298.15)							
0.7343	628.5	-0.1	0.1392	80.1	0.6		
0.4746	353.1	0.9	0.0933	51.5	0.3		
			0.0625				
0.3128	208.9	-1.1	0.0420	34.3	4.4		
0.2067	123.0	-0.9	0.0281	18.7	3.2		

TABLE 1 (continued)

^a $\Delta = \Delta H / n_A(\text{expt}) - \Delta H / n_A(\text{calc}).$

EXPERIMENTAL

The substances were produced by 'Chemipan' (Warsaw). The purity of substances was determined chromatographically, and the water contents by the Karl-Fischer method; the values of these determinations corresponded, respectively, to (%): 99.9, 0.11 (1); 99.99, 0.01 (2); 99.85, 0.11 (3); 99.6, 0.0028 (4); 99.95, 0.006 (5); 99.8, 0.056 (6); 99.98, 0.02 (7); 99.9, 0.003 (8).

The calorimeter used in the determination of heats of dilution was an LKB batch microcalorimeter (Model 10700-2). The microcalorimeter was tested by the determination of the heat of dilution of sucrose and by the Joule's effect generated after each calorimetric measurement. The technique used to measure enthalpies of dilution was as follows: a solution of concentration m_{A_3} was placed in a 4-cm³ chamber of the calorimetric vessel. Distilled water was placed in a 2-cm³ chamber. After the measurement of the heat of dilution, a solution of concentration m_F was removed from the calorimeter, and kept for the next experiment. The values of $\Delta H/n_A$ were calculated from the following equation

$$\Delta H/n_{\rm A} = \sum_{j=1}^{\infty} B_j \left[n_{\rm A} m_{\rm F}^j - n_{\rm A} m_{\rm A}^j \right] / n_{\rm A} \tag{1}$$

where ΔH is the enthalpy change on mixing; n_A represents the number of moles of solute. The coefficients B_j were determined by the least-squares method. The relation between the enthalpy of dilution and the concentration, $H^{ex}(m)$, similar to the literature [7,8] is presented by eqn. (2)

$$H^{\rm ex}(m) = B_1 m + B_2 m^2 + B_3 m^3 + \dots$$
 (2)

TABLE 2

The B_i coefficients (eqn. 1)

No.	Solute	B ₁ (J kg me	$(J kg^2 mc^2) B_2 (J kg^2 mc^2)$	$(J^{-3}) B_3 (J \text{ kg}^3 \text{ mo})$	l ⁻⁴) RMSD ^a
		T = 313.15	K		
1	CH ₃ -NH-CO-CH ₃	197.3	57.42	-8.81	1.6
2	C ₂ H ₅ -NH-CO-CH ₃	362.1	163.04	- 29.05	4.3
3	CH ₃ -NH-CO-C ₂ H ₅	570.2	82.35	- 14.80	9.8
4	C ₃ H ₇ -NH-CO-CH ₃	740.5	221.57		4.9
5	(CH ₃) ₂ CH-NH-CO-CH	[3 748.6	286.70	-65.88	6.2
6	(CH ₃) ₃ C-NH-CO-CH ₃	985.9	453.22	261.94	1.5
7	CH ₃ -NH-CO-CH(CH ₃) 2 1009.7	270.43	- 87.73	4.1
8	C ₄ H ₉ -NH-CO-CH ₃	1211.1	1079.03	- 362.97	6.0
		T = 298.15	Κ		
9	CH ₃ -NH-CO-CH ₃	285.7 ^b	45.46	- 5.96	3.9
10	C ₄ H ₉ -NH-CO-CH ₃	1505.8 °	1030.07	- 296.94	4.9
• R	$\frac{1}{MSD (I \text{ mol}^{-1})} = \sum_{n=1}^{N} \left[\frac{1}{n} \right]$	$\Delta H_{(expt.)} - \Delta I$	$\left(\frac{H_{(calc)}}{2}\right)^2$ where	e N is the numb	er of dilut

experiments, S is the number of adjustable parameters.

^b 235.5 ± 5.4 , Savage and Wood [7].

[°] 1477.3±11.7, Savage and Wood [7].

Fig. 1. Enthalpies of dilution vs. concentration of diluted aqueous solutions at 313.15 K for: (1) N-methylacetamide; (2) N-ethylacetamide; (3) N-methylpropionamide; (4) N-propylacetamide; (5) N-*i*-propylacetamide; (6) N-*t*-butylacetamide; (7) N-methylisobutyramide; (8) N-butylacetamide; and at 298.15 K for: (9) N-methylacetamide; (10) N-butylacetamide.

RESULTS AND DISCUSSION

The raw experimental data are given in Table 1 and the B_j coefficients in eqn. (1) are given in Table 2. Differences, Δ , between experimental and calculated values, $\Delta H/n_A$, from eqn. (1) are given in the third and sixth columns of Table 1. Figure 1 presents graphically the dependence of H^{ex} on the concentration, m, calculated by eqn. (2); Fig. 2 shows the dependence of coefficient B_1 on the number of CH₂ groups in the series of N-alkylated amides examined.

The results obtained indicate that B_1 increases with the number of alkyl groups, and, for the compounds studied, decreases with increasing temperature. For the temperatures 298.15 and 313.15 K, the corresponding values of B_1 are, respectively $CH_3-NH-CO-CH_3$, $B_1 = 285.7$ and 197.3; $CH_3-NH-CO-C_2H_5$, $B_1 = 636.0$ [7] and 570.2; $C_4H_9-NH-CO-CH_3$, $B_1 = 1505.8$ and 1211.1 (Table 2). It has been noted that relevant differences in the value of B_1 due to the place of substitution of the alkyl group occur: for alkyl groups substituted to a C atoms, the value of B_1 is > 200 J kg mol⁻² greater than for an analogical group substituted to an N atom:

Fig. 2. Coefficient B_1 vs. number of CH₂ groups of diluted aqueous solutions at 313.15 K for: (1) N-methylacetamide; (2) N-ethylacetamide; (3) N-methylpropionamide; (4) N-propylacetamide; (5) N-*i*-propylacetamide; (6) N-*t*-butylacetamide; (7) N-methylisobutyramide; (8) N-butylacetamide; and at 298.15 K for: (9) N-methylacetamide; (10) N-butylacetamide.

 $C_2H_5-NH-CO-CH_3$, $B_1 = 362.1$; $CH_3-NH-CO-C_2H_5$, $B_1 = 570.2$; $(CH_3)_2CH-NH-CO-CH_3$, $B_1 = 748.6$; $CH_3-NH-CO-CH(CH_3)_2$, $B_1 = 1009.7$ (Table 2).

On the basis of experimental data (Table 1) the association model of Stroesser and Gill [10] was used for the calculations. These calculations did not give positive results.

ACKNOWLEDGMENTS

This investigation was supported by the Polish Academy of Sciences within the Project 09.7. The author thanks Dr. S. Malanowski for his aid in calculations.

REFERENCES

- 1 A. Zielenkiewicz, W. Zielenkiewicz and S. Malanowski, Thermochim. Acta, 74 (1984) 95.
- 2 J. Szemińska, W. Zielenkiewicz and K.L. Wierzchowski, Biophys. Chem., 10 (1979) 409.
- 3 A. Zielenkiewicz, E. Plesiewicz and K.L. Wierzchowski, Biophys. Chem., 10 (1979) 415.
- 4 A.B. Teplitsky, I.K. Yanson, O.T. Glukhova, A. Zielenkiewicz, W. Zielenkiewicz and K.L. Wierzchowski, Biophys. Chem., 11 (1980) 17.
- 5 A.B. Teplitsky, O.T. Glukhova, L.F. Sukhodub, I.K. Yanson, A. Zielenkiewicz, W. Zielenkiewicz, J. Kosiński and K.L. Wierzchowski, Biophys. Chem., 15 (1982) 139.
- 6 To be published.
- 7 J.J. Savage and R.H. Wood, J. Solution Chem., 5 (1976) 733.
- 8 R.H. Wood and L.H. Hiltzik, J. Solution Chem., 9 (1980) 45.
- 9 G.C. Kresheck, J. Phys. Chem., 73 (1969) 2441.
- 10 P.R. Stroesser and S.J. Gill, J. Phys. Chem., 71 (1967) 564.